海量在线大模型 兼容OpenAI API

全部大模型

326个模型 · 2025-09-17 更新
Sonoma Dusk Alpha
免费使用
openrouter/sonoma-dusk-alpha
This is a cloaked model provided to the community to gather feedback. A fast and intelligent general-purpose frontier model with a 2 million token context window. Supports image inputs and parallel tool calling. Note: It’s free to use during this testing period, and prompts and completions are logged by the model creator for feedback and training.
2025-09-06 2,000,000 text+image->text Other
rekaai/reka-flash-3:free
Reka Flash 3 is a general-purpose, instruction-tuned large language model with 21 billion parameters, developed by Reka. It excels at general chat, coding tasks, instruction-following, and function calling. Featuring a 32K context length and optimized through reinforcement learning (RLOO), it provides competitive performance comparable to proprietary models within a smaller parameter footprint. Ideal for low-latency, local, or on-device deployments, Reka Flash 3 is compact, supports efficient quantization (down to 11GB at 4-bit precision), and employs explicit reasoning tags ("") to indicate its internal thought process. Reka Flash 3 is primarily an English model with limited multilingual understanding capabilities. The model weights are released under the Apache 2.0 license.
2025-03-13 32,768 text->text Other
qwen/qwen3-next-80b-a3b-thinking
Qwen3-Next-80B-A3B-Thinking is a reasoning-first chat model in the Qwen3-Next line that outputs structured “thinking” traces by default. It’s designed for hard multi-step problems; math proofs, code synthesis/debugging, logic, and agentic planning, and reports strong results across knowledge, reasoning, coding, alignment, and multilingual evaluations. Compared with prior Qwen3 variants, it emphasizes stability under long chains of thought and efficient scaling during inference, and it is tuned to follow complex instructions while reducing repetitive or off-task behavior. The model is suitable for agent frameworks and tool use (function calling), retrieval-heavy workflows, and standardized benchmarking where step-by-step solutions are required. It supports long, detailed completions and leverages throughput-oriented techniques (e.g., multi-token prediction) for faster generation. Note that it operates in thinking-only mode.
2025-09-12 262,144 text->text Qwen3
qwen/qwen3-next-80b-a3b-instruct
Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.
2025-09-12 262,144 text->text Qwen3
Qwen: Qwen3 Max
$0.0048/1k
$0.024/1k
qwen/qwen3-max
Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.
2025-09-05 256,000 text->text Qwen3
qwen/qwen3-coder:free
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
2025-07-23 262,144 text->text Qwen3
Qwen: Qwen3 Coder 480B A35B
$0.0010/1k
$0.0040/1k
qwen/qwen3-coder
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
2025-07-23 262,144 text->text Qwen3
qwen/qwen3-coder-30b-a3b-instruct
Qwen3-Coder-30B-A3B-Instruct is a 30.5B parameter Mixture-of-Experts (MoE) model with 128 experts (8 active per forward pass), designed for advanced code generation, repository-scale understanding, and agentic tool use. Built on the Qwen3 architecture, it supports a native context length of 256K tokens (extendable to 1M with Yarn) and performs strongly in tasks involving function calls, browser use, and structured code completion. This model is optimized for instruction-following without “thinking mode”, and integrates well with OpenAI-compatible tool-use formats.
2025-07-31 262,144 text->text Qwen3
qwen/qwen3-8b:free
Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.
2025-04-29 40,960 text->text Qwen3
Qwen: Qwen3 8B
$0.0001/1k
$0.0006/1k
qwen/qwen3-8b
Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.
2025-04-29 128,000 text->text Qwen3
qwen/qwen3-4b:free
Qwen3-4B is a 4 billion parameter dense language model from the Qwen3 series, designed to support both general-purpose and reasoning-intensive tasks. It introduces a dual-mode architecture—thinking and non-thinking—allowing dynamic switching between high-precision logical reasoning and efficient dialogue generation. This makes it well-suited for multi-turn chat, instruction following, and complex agent workflows.
2025-05-01 40,960 text->text Qwen3
Qwen: Qwen3 32B
$0.0001/1k
$0.0005/1k
qwen/qwen3-32b
Qwen3-32B is a dense 32.8B parameter causal language model from the Qwen3 series, optimized for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, coding, and logical inference, and a "non-thinking" mode for faster, general-purpose conversation. The model demonstrates strong performance in instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.
2025-04-29 40,960 text->text Qwen3