海量在线大模型 兼容OpenAI API

全部大模型

326个模型 · 2025-09-17 更新
Morph: Morph V3 Large
$0.0036/1k
$0.0076/1k
morph/morph-v3-large
Morph's high-accuracy apply model for complex code edits. 2000+ tokens/sec with 98% accuracy for precise code transformations.
2025-07-08 81,920 text->text Other
Morph: Morph V3 Fast
$0.0036/1k
$0.0076/1k
morph/morph-v3-fast
Morph's fastest apply model for code edits. 4500+ tokens/sec with 96% accuracy for rapid code transformations.
2025-07-08 81,920 text->text Other
moonshotai/kimi-vl-a3b-thinking:free
Kimi-VL is a lightweight Mixture-of-Experts vision-language model that activates only 2.8B parameters per step while delivering strong performance on multimodal reasoning and long-context tasks. The Kimi-VL-A3B-Thinking variant, fine-tuned with chain-of-thought and reinforcement learning, excels in math and visual reasoning benchmarks like MathVision, MMMU, and MathVista, rivaling much larger models such as Qwen2.5-VL-7B and Gemma-3-12B. It supports 128K context and high-resolution input via its MoonViT encoder.
2025-04-11 131,072 text+image->text Other
moonshotai/kimi-vl-a3b-thinking
Kimi-VL is a lightweight Mixture-of-Experts vision-language model that activates only 2.8B parameters per step while delivering strong performance on multimodal reasoning and long-context tasks. The Kimi-VL-A3B-Thinking variant, fine-tuned with chain-of-thought and reinforcement learning, excels in math and visual reasoning benchmarks like MathVision, MMMU, and MathVista, rivaling much larger models such as Qwen2.5-VL-7B and Gemma-3-12B. It supports 128K context and high-resolution input via its MoonViT encoder.
2025-04-11 131,072 text+image->text Other
MoonshotAI: Kimi K2 0905
$0.0015/1k
$0.0061/1k
moonshotai/kimi-k2-0905
Kimi K2 0905 is the September update of Kimi K2 0711. It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.
2025-09-05 262,144 text->text Other
moonshotai/kimi-k2:free
Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.
2025-07-12 32,768 text->text Other
MoonshotAI: Kimi K2 0711
$0.0006/1k
$0.0100/1k
moonshotai/kimi-k2
Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.
2025-07-12 63,000 text->text Other
moonshotai/kimi-dev-72b:free
Kimi-Dev-72B is an open-source large language model fine-tuned for software engineering and issue resolution tasks. Based on Qwen2.5-72B, it is optimized using large-scale reinforcement learning that applies code patches in real repositories and validates them via full test suite execution—rewarding only correct, robust completions. The model achieves 60.4% on SWE-bench Verified, setting a new benchmark among open-source models for software bug fixing and code reasoning.
2025-06-17 131,072 text->text Other
MoonshotAI: Kimi Dev 72B
$0.0012/1k
$0.0046/1k
moonshotai/kimi-dev-72b
Kimi-Dev-72B is an open-source large language model fine-tuned for software engineering and issue resolution tasks. Based on Qwen2.5-72B, it is optimized using large-scale reinforcement learning that applies code patches in real repositories and validates them via full test suite execution—rewarding only correct, robust completions. The model achieves 60.4% on SWE-bench Verified, setting a new benchmark among open-source models for software bug fixing and code reasoning.
2025-06-17 131,072 text->text Other
MiniMax: MiniMax-01
$0.0008/1k
$0.0044/1k
minimax/minimax-01
MiniMax-01 is a combines MiniMax-Text-01 for text generation and MiniMax-VL-01 for image understanding. It has 456 billion parameters, with 45.9 billion parameters activated per inference, and can handle a context of up to 4 million tokens. The text model adopts a hybrid architecture that combines Lightning Attention, Softmax Attention, and Mixture-of-Experts (MoE). The image model adopts the “ViT-MLP-LLM” framework and is trained on top of the text model. To read more about the release, see: https://www.minimaxi.com/en/news/minimax-01-series-2
2025-01-15 1,000,192 text+image->text Other
MiniMax: MiniMax M1
$0.0012/1k
$0.0066/1k
minimax/minimax-m1
MiniMax-M1 is a large-scale, open-weight reasoning model designed for extended context and high-efficiency inference. It leverages a hybrid Mixture-of-Experts (MoE) architecture paired with a custom "lightning attention" mechanism, allowing it to process long sequences—up to 1 million tokens—while maintaining competitive FLOP efficiency. With 456 billion total parameters and 45.9B active per token, this variant is optimized for complex, multi-step reasoning tasks. Trained via a custom reinforcement learning pipeline (CISPO), M1 excels in long-context understanding, software engineering, agentic tool use, and mathematical reasoning. Benchmarks show strong performance across FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench, often outperforming other open models like DeepSeek R1 and Qwen3-235B.
2025-06-18 1,000,000 text->text Other
microsoft/phi-3.5-mini-128k-instruct
Phi-3.5 models are lightweight, state-of-the-art open models. These models were trained with Phi-3 datasets that include both synthetic data and the filtered, publicly available websites data, with a focus on high quality and reasoning-dense properties. Phi-3.5 Mini uses 3.8B parameters, and is a dense decoder-only transformer model using the same tokenizer as Phi-3 Mini. The models underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. When assessed against benchmarks that test common sense, language understanding, math, code, long context and logical reasoning, Phi-3.5 models showcased robust and state-of-the-art performance among models with less than 13 billion parameters.
2024-08-21 128,000 text->text Other